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a b s t r a c t

The longitudinal elastic central impact of a rod system, consisting of a uniform rod having a pre-impact
velocity against a stepped rod which is in a state of rest and interacts by means of unilateral constraints
with a rigid barrier, is modelled.

© 2009 Elsevier Ltd. All rights reserved.

The problem of the longitudinal impact of a rod of distributed mass and a description of the motion of the cross-sections by wave
equations was formulated by Navier, Boussinesq, Saint Venant and Sears.

In the second half of the twentieth century, the use of impact technologies in machine construction, the mining industry, building and
instrument making led to a considerable number of theoretical and experimental investigations in the field of longitudinal impact. The
collision of uniform rods of different length and cross-section areas was considered without taking account of possible repeated collisions
in sections with unilateral constraints.1,2 Repeated collisions in sections with unilateral constraints were taken into account in the process
of longitudinal elastic and elastoplastic impact.3–5 A relation was established between the duration of the impact and the ratio of the
masses of the impacting body and the rigidly clamped rod. Mass ratios were found for which a secondary collision is observed. However,
no account was taken of the effect of the configuration of the colliding elements on the impact process. The duration of the breaking of
contact before repeated collision could not be successfully measured. The impact of a thin rod on a rigid Barrier has been considered in
detail as well as the impact of two bodies, including the change in the velocity parameters of the sections and the stresses and strains of
the colliding bodies.6 However, the possibility of a repeated collision which arises as a result of the transformation of the shock waves and
the effect of a repeated impact on the change in the magnitudes of the strains and stresses have not been fully revealed.

It can be seen that, in none of the papers mentioned, is there a qualitative estimate of the effect of repeated impacts on the dynamic
characteristics of the impact process (the stresses and strains of greatest modulus developed in the elements of the impact system) or a
systemization of the results obtained.

A model of the longitudinal impact of rods is presented below in which there are discontinuities in the constraints and in which
repeated collisions occur.7,8 An estimate of the effect of repeated impacts in sections with unilateral constraints on the change in the
maximum longitudinal deformation of the uniform segments of the rod system is given.

1. Formulation of the problem

We will consider a mathematical model of the longitudinal impact of a uniform rod of mass m1 and length l1, moving at a velocity V0,
on a fixed non-uniform stepped rod. The length of the initial segment of the fixed rod is l2, the length of the final segment is l3 and the
mass of the two segments is m2. This fixed rod is in contact with a rigid barrier (Fig. 1). The overall length of the two rods is equal to l. All
the segments are made of the same material. The wave model of a longitudinal impact1,2,7,8 is used.

The motion of the cross-sections of the colliding rods is described by the wave equation

(1.1)
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Fig. 1.

where u1(x, t), u2(x, t) and u3(x, t) are the longitudinal displacement of a cross-section of the uniform rod 1, of the initial segment of the
stepped rod 2 and of the final segment of the stepped rod 3 respectively, x is the coordinate of the cross-section, t is the time and a is the
velocity of propagation of the longitudinal deformation wave.

The initial conditions determine the state of the rods before they collide; when t = t0 = 0

(1.2)

The boundary conditions determine that there is no force in the section x = 0 and that the velocity of the section x = l is equal to zero
during the interaction of segment 3 of the inhomogeneous rod with the rigid barrier:

(1.3)

and, also, determines the equality of the forces and velocities in the impacting sections x = l1 of the homogeneous rod 1 and the initial
segment 2 of the stepped rod when they directly interact

(1.4)

or when there are no forces in the impacting sections of the rods if there is no interaction:

(1.5)

Here, E is the modulus of elasticity of the first kind, A1 is the cross-section area of the uniform rod 1 and A2 is the cross-section area of
the initial segment 2 of the stepped rod.

In the transitional cross-section x = l1 + l2 of the initial and final segments of the stepped rod, the boundary conditions also determine
the equality of the forces and velocities

(1.6)

where A3 is the cross-section area of the final segment 3 of the stepped rod.

2. Method of solution. Results

The differential Eq. (1.1) is solved by d’Alembert’s method in the form1

where f1(at − x), f2(at − x) and f3(at − x) are functions that describe the direct waves which propagate through segments 1, 2 and 3 respectively
in the direction of the x axis, and �1(at + x), �1(at + x) and �3(at + x) are functions describing the return waves which propagate through
segments 1, 2 and 3 in the opposite direction. Derivatives of functions are denoted by a prime and the values of n are determined by the
last formula of (1.1).

We will now change to relative quantities characterizing the direct and return waves, the deformation in a section and its velocity

Example 1. Consider a longitudinal collision between the uniform and stepped rods with lengths of the segments: l1 = 0.2l and l2 = l3 = 0.4l.
The ratio of the cross-section areas of each preceding segment to the next one: � = A1/A2 = A2/A3 = 3. In this case, the longitudinal stiffness
of the cross-sections decreases in the direction of the rigid barrier. The field of wave states (Fig. 2) is constructed by the method of
characteristics. Particular attention is paid to the existence of repeated collisions between the rods in the section x = l1 and to the existence
of repeated impacts of the stepped rod in the section x = l with the barrier. The results of the modelling are shown in Table 1, where
t̄ = t(l/a)−1.
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Fig. 2.

At the instant corresponding to the value of the relative time t̄ = 0.8, a direct wave f̄ ′
1(at − l1) = 0.13 (lines 4 - 7, Fig. 2), formed in the

section x = 0 when t̄ = 0.6 impinges on the section x = l1 from the left. At the same instant, a new return wave �̄′
2(at + l1) = 0.38, formed

in the section x = 0.6l when t̄ = 0.4 (lines 3 - 7), approaches the section x = l1 from the right. As a consequence of the unilateral constraint
and in accordance with boundary conditions (1.3) - (1.6), the direct wave f̄ ′

1(at − l1) = 0.13 is reflected in the form of a return wave of the
same magnitude �̄′

2(at + l1) = 0.13 (lines 7 - 8). In the zone of the fifth state of the first segment I5, the cross-sections of this segment will
be spanned by these waves. In the corresponding sections of the first segment, the relative longitudinal deformation will be equal to zero
and the velocity, including in the contact section x = l1 (a uniform rod), is equal to v̄2(l1, t) = 0.26. The duration of this state is determined
for an arbitrary section of the first segment by the difference between the ordinates t̄ which have the points of line 8 - 9 and the line 7 - 8
for this section.

Correspondingly, the wave returning from the right �̄′
2(at + l1) = 0.38 which is incident on the section is reflected without any changes

in the form of a direct wave f̄ ′
2(at − l1) = 0.38 (lines 7 - 10). In the II5 domain, the cross-section of this segment will be spanned by these

perturbations. In the corresponding sections of the second segment, the relative longitudinal deformation will be equal to zero and the
velocity, including that in the contact section x = l1, is equal to v̄2(l1, t) = 0.76. The duration of this state for an arbitrary section of the second
segment is determined by the difference between the ordinates t, which are the points of the line 6 - 9 and the line 7 - 10 for this segment.
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Table 1

State domains f̄ ′ �̄′ �̄ v̄ State domains f̄ ′ �̄′ �̄ v̄

I0 0.50 0.50 0.00 1.00 I1 0.50 0.25 −0.25 0.75
I2 0.25 0.25 0.00 0.50 I3 0.25 0.13 −0.12 0.38
I4 0.13 0.13 0.00 0.26 I5 0.13 0.13 0.00 0.26
I6 0.13 0.13 0.00 0.26 I7 0.13 0.13 0.00 0.26
I8 0.13 0.13 0.00 0.26 I9 0.13 0.13 0.00 0.26
I10 0.13 0.13 0.00 0.26 I11 0.13 −0.13 −0.26 0.00
I12 0.13 −0.13 −0.26 0.00 I13 −0.13 −0.13 0.00 −0.26
I14 0.13 −0.03 −0.16 0.10 I15 −0.13 −0.03 0.10 −0.16
I16 −0.03 −0.03 0.00 −0.06 I17 −0.13 −0.16 −0.03 −0.29
I18 −0.03 −0.16 −0.13 −0.19 I19 −0.16 −0.16 0.00 −0.32
I20 −0.03 −0.40 −0.37 −0.43 I21 −0.16 −0.40 −0.24 −0.56
I22 −0.40 −0.40 0.00 −0.80 I23 −0.40 −0.46 −0.06 −0.86
I24 −0.16 −0.46 −0.30 −0.62
II0 0.00 0.00 0.00 0.00 II1 0.75 0.00 −0.75 0.75
II2 0.38 0.00 −0.38 0.38 II3 0.75 0.38 −0.37 1.13
II4 0.38 0.38 0.00 0.76 II5 0.38 0.38 0.00 0.76
II6 0.38 0.19 −0.19 0.57 II7 0.38 0.19 −0.19 0.57
II8 0.19 0.19 0.00 0.38 II9 0.38 −0.38 −0.76 0.00
II10 0.19 −0.38 −0.57 −0.19 II11 −0.38 −0.38 0.00 −0.76
II12 0.19 −0.19 −0.38 0.00 II13 0.39 −0.38 −0.77 0.01
II14 −0.38 −0.19 0.19 −0.57 II15 0.39 −0.19 −0.58 0.20
II16 −0.38 −0.76 −0.38 −1.14 II17 0.29 −0.19 −0.48 0.10
II18 0.39 −0.76 −1.15 −0.37 II19 −0.10 −0.19 −0.09 −0.29
II20 0.29 −0.76 −1.05 −0.47 II21 0.39 −0.37 −0.76 0.02
II22 −0.10 −0.76 −0.66 −0.86 II23 0.29 −0.37 −0.66 −0.08
II24 0.34 −0.76 −1.10 −0.42 II25 −0.10 −0.37 −0.27 −0.47
II26 0.29 −0.14 −0.43 0.15 II27 0.34 −0.37 −0.71 −0.03
II28 −0.10 −0.14 −0.04 −0.24 II29 −0.06 −0.37 −0.31 −0.43
II30 0.34 −0.14 −0.48 0.20 II31 −0.10 −0.34 −0.24 −0.44
II32 −0.06 −0.14 −0.48 −0.20 II33 0.34 −0.34 −0.68 0
III0 0.00 0.00 0.00 0.00 III1 1.13 0.00 −1.13 1.13
III2 0.57 0.00 −0.57 0.57 III3 1.13 −1.13 −2.26 0.00
III4 0.57 −1.13 −1.70 −0.56 III5 1.14 −1.13 −2.27 0.01
III6 0.57 −0.57 −1.14 0.00 III7 1.14 −0.57 −1.71 0.57
III8 0.57 −0.57 −1.14 0.00 III9 1.14 −1.14 −2.28 0.00
III10 0.57 −1.14 −1.71 0.00 III11 −0.01 −1.14 −1.13 −1.15
III12 0.57 −0.57 −1.14 0.00 III13 1.14 −1.14 −2.28 0.00
III14 −0.01 −0.57 −0.56 −0.58 III15 1.14 −0.57 −1.71 0.57
III16 0.72 −0.57 −1.29 0.15 III17 −0.01 −0.01 0.00 −0.02
III18 1.14 −0.01 −1.15 1.13 III19 0.14 −0.57 −0.71 −0.43
III20 0.72 −0.01 −0.73 0.71 III21 1.14 −1.14 −2.28 0.00
III22 0.14 −0.01 −0.15 0.13 III23 0.72 −1.14 −1.86 −0.42

It should be noted that v̄1(l1, t) < v̄2(l1, t), and therefore the uniform rod detaches from the stepped rod in the contact section x = l1. This
detachment is shown by a circle in Fig. 2. As a result, the ends of the two rods in this section become free (Fig. 3, a).

The relative distance between the rods �(t) = �(t)/l (Fig. 3, a) depends on the difference between the relative velocities of the contact
sections x = l1 and on the relative time t̄ = t(l/a)−1

In the interval 0.8(l/a) ≤ t ≤ 1.2(l/a), we have v̄2(l1, t) − v̄1(l1, t) = 0.50. During the corresponding time t̄ = 1.2 − 0.8 = 0.4, the relative
distance �̄1 = 0.50 × 0.4 = 0.20. A diagram of the velocities of the sections of the uniform rod and the stepped rod when t = 0.8l/a is shown in

Fig. 3.
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Fig. 4.

Fig. 3, b. In the first segment, the relative velocity of all the sections at this instant is v̄1(x, t) = 0.26, in the second segment it is v̄2(x, t) = 0.76
and, in the third segment, v̄3(x, t) = 1.13.

When t̄ = 1.2, in segment 2, a return wave �̄′
2(at + l1) = 0.19, formed in the section x = 0.8l (line 6 - 9, Fig. 2), approaches the contact

section x = l1 from the right. This wave is reflected in the form of a direct wave f̄ ′
1(at − l1) = 0.19 from the section as from a free end. Then,

in the domain of the eighth state of the second segment II8, the relative velocity of the contact section of the stepped rod is equal to
v̄2(l1, t) = 0.38. This wave state is maintained up to the instant t̄ = 1.6. At the same time, the velocity of the contact section of the uniform
rod remains equal to v̄1(l1, t) = 0.26. In this case, when 1.2 ≤ t̄ ≤ 1.6, the relative distance between the rods increases by an amount
�̄2 = 0.048.

When t̄ = 1.6, the free section of the stepped rod x = l1 acquires a velocity v̄2(l1, t) = −0.76 and begins to move to the left (Fig. 4a and
b) since, at this instant, a return wave �̄′(at + 0.6l) = −0.38 impinges on it from the right (line 10 - 13, Fig. 2) and is reflected in the form
of a direct wave of the same magnitude (line 13 - 18). The free section x = l1 of the uniform rod keeps moving to the right with a velocity
v̄1(l1, t) = 0.26 (Fig. 4a and 4b). For this reason, the relative distance ı̄(t) between the rods starts to contract and a second collision of the
rods in the contact section is inevitable.

When t̄ = 1.6, the relative distance between the rods will be equal to �̄1 + �̄2 = 0.248. Consequently, for a second collision the contact
sections of the rods must surmount this distance. This occurs over a time interval

from the instant t = 1.6l/a. Hence, a second collision of the rods in the contact section occurs at the instant t = 1.6l/a+�1 = 1.84l/a. The
second impact is shown by a dark square in Fig. 2. In accordance with the boundary conditions (1.3) - (1.6), the two rods are coupled in the
contact section x = l1 after the second collision. Hence, a new direct wave f̄ ′

2(at − l1) = 0.39 is formed from the right in the contact section
(line 17 - 20) and a new return wave �̄′

2(at + l1) = −0.13 (line 17 - 18) is formed from the left.
In the domain II13, the return wave coming from the right �̄′

2(at + l1) = −0.38 (line 10 - 13) and the new direct wave f̄ ′
2(at − l1) = 0.39

(line 17 - 20) act on the cross-sections of the second segment. The relative longitudinal deformation in the corresponding sections of the
second segment �̄2(x + t) = −0.77 and the relative velocity of the sections in this segment v̄2(x, t) = 0.01. The duration of this state for an
arbitrary section of the second segment is determined by the difference between the ordinates t̄ which are the points of the lines 17 - 20
and 16–19 for this section.

In the domain I11, direct wave from the left f̄ ′
1(at − l1) = 0.13 (line 12 - 13) and a new return wave �̄′

1(at + l1) = −0.13 (line 17 - 18) act on
the cross-sections. The relative longitudinal deformation in the corresponding sections of the second segment �̄1(x, t) = 0 and the relative
velocity of the sections in this segment v̄1(x, t) = −0.26. The duration of this state for an arbitrary section of the first segment is determined
by the difference between the ordinates t̄ which are the points of the lines 17 - 18 and 16 - 19 for this section.

When t̄ = 2.8, a direct wave f̄ ′
1(at − l1) = −0.40 (line 27 - 31), which has been formed in the section x = 0 when t̄ = 2.6 impinges on the

contact section x = l1. When t̄ = 2.8, a return wave �̄′
2(at + l1) = −0.14 (line 26 - 30) impinges from the right on the contact section x = l1.

As a consequence of the unilateral constraint and in accordance with boundary conditions (1.3) - (1.6), the direct wave f̄ ′
1(at − l1) = −0.40

is reflected in the form of a return wave of the same magnitude �̄′
1(at + l1) = −0.40. Correspondingly, the return wave �̄′

2(at + l1) = −0.14,
which is incident on the section from the right, is reflected unchanged in the form of a direct wave f̄ ′

2(at − l1) = −0.14. The velocity of the
contact section in segment 1 will be equal to v̄1(l1, t) = −0.80. The velocity of the section x = l1 in segment 2 v̄2(l1, t) = −0.28. Since the
condition v̄1(l1, t) < v̄2(l, t) holds, detachment of the uniform and stepped rods occurs again in the contact section x = l1. The detachment
when t̄ = 2.8 is shown in Fig. 2 by a small circle. The parameters of the functions of the direct and return waves, as well as the relative
longitudinal deformation �̄(x, t) and the relative velocity v̄(x, t) for the corresponding sections of the domains of the states I23 and II32
including those for the contact section x = l1, are shown in Table 1.

The relative distance between the rods is: �̄(t) = [v̄2(l1, t) − v̄1(l1, t)]t̄ (Fig. 5,a). When t̄ = 2.9, the cross-sections in the interval
0.1l < x < 0.2l have a relative velocity v̄1(x, t) = −0.80 and the cross-sections in the interval 0.2l < x < 0.3l acquire a relative velocity v̄2(x, t) =
−0.28 (diagram of v̄ in Fig. 5, b).

According to the results of the modelling, repeated collisions of the rods in the contact section are no longer noted and the relative
distance �̄(t) will increase.
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Fig. 5.

Table 2

l1/l l2/l l3/l � = 2 � = 3 � = 0.5 � = 0.33

0.2 0.2 0.6 1 2 0 0
0.2 0.4 0.4 2 2 0 0
0.2 0.6 0.2 2 3 0 0
0.4 0.2 0.4 3 1 0 0
0.4 0.4 0.2 3 2 2 0
0.6 0.2 0.2 0 1 0 0

The longitudinal collision was modelled for the different segment lengths l1, l2, l3 shown below. The ratios � of the cross-section areas
of each preceding segment to the following segment are: � = 2, � = 3, � = 0.5, � = 0.33. It has already been pointed out above that particular
attention was paid to the existence of repeated collisions and the elucidation of the laws governing their occurrence. The results of the
modelling are presented in Table 2, where the overall number of repeated collisions between the rods in the section x = l1 and between the
stepped rod and the rigid barrier in the section x = l during impact are shown.

It can be seen from Table 2 that, as the longitudinal stiffness decreases (� ≥ 1), there is an increase in the overall number of repeated
collisions in the impact process and, when the longitudinal stiffness increases (� ≤ 1), there are practically no repeated collisions.

The need to take account of repeated collisions during the process of longitudinal impact is due to the following. At the instant of a
repeated collision, new direct and return waves arise in the contact section which, on propagating from this section, form new wave states,
which are characterized by new amounts of deformation and velocities of the sections of the segments. In certain cases after repeated
collisions, the magnitude of the maximum longitudinal deformation � in a number of segments of the rod system can be many times
greater than the maximum longitudinal deformation prior to the break of contact, after which a repeated collision followed.4 Taking
account of repeated collisions can increase the overall duration of a longitudinal impact process T by a large factor.

Diagrams of the values of the duration of the impact process T and the maximum relative longitudinal deformation �̄ for rod systems
without taking account of repeated collisions (the light tone in the diagram, T1 and �̄I) and when they are taken into account (the hatched
tone in the diagram, TII and �̄II) have been constructed in Fig. 6 for the following combinations of the geometrical parameters

Example 2. We will now analyse the impact of a uniform rod of length l1 = 0.2l on a stepped rod interacting with a rigid barrier. The length
of the first uniform segment of the stepped rod is l2 = 0.6l and the length of the second l3 = 0.2l, � = 3. It can be seen from the diagram that,
when no consideration is given to the possibility of the occurrence of repeated collisions in sections with unilateral constraints, we have
TI = 1.2l/a, �̄I = 1.08 (the Blank blocks, Fig. 6, b). If the impact process is tracked taking account of the repeated collisions which occur and
the subsequent interruption of the contacts, then the duration of the impact TII is 6.0l/a and the modulus of �̄II after a repeated impact,
since new wave states arise, will attain a magnitude of 2.29 (the hatched blocks, Fig. 6, b). Hence, the duration of the loaded state of the
rod system increases by a factor of five and the maximum longitudinal deformation becomes more than double. When there are repeated
closures of the contacts during the longitudinal impact of rod systems, the quantities T and �̄ increase by one and a half to five times (see
the diagrams in Fig. 6, a, c, d, e, f). It should be noted that repeated collision in sections with unilaterel constraints only occur in the case of
a specific configuration of rod systems, that is, for a specific ratio of the lengths of the uniform segments and their cross-section areas.
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Fig. 6.
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